Нарушение водного обмена в организме

Типовые формы нарушения водного обмена

Нарушение водного обмена в организме

Нарушения водного обмена (дисгидрии) подразделяют на гипо-, дегидратацию (обезвоживание) – заключающаяся в уменьшении количества жидкости и гипергидратацию (гипергидрия) – характеризующаяся избыточным накоплением жидкости в организме.

В свою очередь, в зависимости от изменения осмолярной концентрации (соотношение воды и электролитов), гипогидратацию и гипергидратацию подразделяют на изоосмолярную, гипоосмолярную (осмоляльность плазмы менее 280 мосм/кг Н2О) и гиперосмолярную (осмоляльность плазмы крови более 300 мосм/кг Н2О).

Гипогидратация (гипогидрия, обезвоживание) – форма нарушения водно-электролитного обмена, когда имеет место отрицательный водный баланс, т.е. когда выведение воды из организма превышает ее поступление. Крайняя степень обезвоживания называется эксикозом.

Синдром обезвоживания, характеризующийся потерей воды и электролитов, расстройствами кровообращения, ацидозом, нарушением деятельности центральной нервной системы, почек, желудочно-кишечного тракта и других органов и систем, может иметь место при:

– ограничении или лишении организма воды в сочетании с пищей богатой белками;

– лишении организма воды и солей при пероральном введении сернокислого магния (в качестве слабительного);

– внутривенном введении гипертонических растворов различных сахаров (осмотический диурез);

– многократном откачивании желудочного сока или применении рвотных средств (апоморфин и др.);

– внутриперитонеальном диализе;

– искусственном сужении пилорического отдела желудка или начальной части двенадцатиперстной кишки с постоянным отведением наружу секрета поджелудочной железы и др.

Указанные методы ведут к преимущественной первичной потере организмом либо воды, либо электролитов (вместе с соками желудочно-кишечного тракта) и быстрому развитию обезвоживания, повышению вязкости крови, нарушению микроциркуляции с последующим нарушением постоянства внутренней среды и функции различных органов и систем. Особое место при этом принадлежит нарушению деятельности сердечно-сосудистой системы. Нарушение кровообращения сопровождается снижением артериального давления, гиповолемией, приводящими к расстройствам деятельности ЦНС, дыхания, почек.

Изоосмолярная гипогидратация развивается в случаях эквивалентной потери воды и электролитов. Это происходит иногда при полиурии, кишечной аутоинтоксикации, а также в первое время после острой кровопотери. При этом уменьшается объем внеклеточной жидкости без изменения ее осмолярности.

Гипоосмолярная гипогидратация наблюдается при потере организмом большого количества воды и электролитов с преимущественной потерей солей.

Она развивается при потере желудочного и кишечного соков (неукротимая рвота, беременность, профузные поносы), а также при усиленном потоотделении.

При этом снижение осмотического давления во внеклеточной среде приводит к переходу воды в клетки, вследствие чего наступает их отек, гиповолемия, сгущение крови, повышение ее вязкости, что приводит к расстройству кровообращения.

Обезвоживание и потеря электролитов нередко ведут к нарушению кислотно-основного состояния. Так, обезвоживание при потере желудочного сока, сопровождаясь утратой хлоридов и ионов Н+, приводит к выделительному алкалозу. Потеря панкреатического или кишечного соков, содержащих больше натрия и гидрокарбонатов, наоборот, ведет к экскреторному ацидозу.

Гиперосмолярная гипогидратация развивается в тех случаях, когда потеря воды превышает потерю электролитов (прежде всего натрия), при гипервентиляции, профузном потоотделении, потере слюны (пот и слюна гипотоничны по отношению к крови), а также при поносе, рвоте и полиурии, когда возмещение потери поступлением воды в организм недостаточно. При этом наступает уменьшение объема внеклеточной жидкости и повышается ее осмотическое давление. Вода выходит из клеток, наступает их обезвоживание, что проявляется мучительным чувством жажды, несмотря на то, что воды в организме достаточно. В этих условиях имеет место усиленная продукция вазопрессина, которая ограничивает потерю воды ренальным и экстраренальным путями. Иногда в результате увеличения секреции альдостерона происходит задержка натрия и еще большее нарастание гиперосмолярности.

Распределение воды во внутриклеточном и внеклеточном секторах при гипогидратации представлено в таблице 3.

Гипергидратация – форма нарушения водно-электролитного обмена, которая возникает вследствие избыточного поступления воды в организм (водное отравление), либо недостаточного ее выведения, т.е. когда имеет место положительный водный баланс.

При водном отравлении увеличивается количество воды и снижается осмотическое давление как вне, так и внутри клеток организма. Водное отравление возникает у человека, если поступление воды превосходит способность почек к ее выделению, например, при некоторых почечных заболеваниях (гидронефроз и др.

), а также при состояниях, сопровождающихся острым уменьшением или прекращением отделения мочи (у хирургических больных в послеоперационном периоде, у больных в состоянии шока и др.).

Возможно возникновение водного отравления у больных несахарным диабетом, принимающих большое количество жидкости на фоне лечения антидиуретическими гормональными препаратами.

От чрезмерного поступления воды увеличивается объем циркулирующей крови (олигоцитемическая гиперволемия), возникает относительное уменьшение содержания белков и электролитов крови, гемоглобина, гемолиз эритроцитов и гематурия. Диурез первоначально увеличивается, затем начинает относительно отставать от количества поступающей воды, а при развитии гемолиза и гематурии происходит истинное уменьшение мочеотделения.

Изоосмолярная гипергидратация может иметь место после введения в организм избыточного объема хлористого натрия 0.9%, растворов Рингера-Локка, Рингера-Тироде, Кребса-Рингера. Развивающаяся при этом гипергидрия носит временный характер и обычно быстро устраняется (в условиях нормальной работы системы регуляции водного обмена).

Гипоосмолярная гипергидратация как форма нарушения водно-электролитного обмена связана с накоплением воды, когда ее поступление в организм превышает экскреторную способность почек.

При этом состоянии падает осмотическое давление во внеклеточной среде, вода поступает в клетки, происходит их набухание, развивается, так называемое, водное отравление.

Внутриклеточная гипоосмолярная гипергидратация сопровождается грубыми нарушениями ионного и кислотно-основного состояния, мембранных потенциалов клеток. Клинически у больных появляются отёки на лице, ногах, развивается асцит, отёк легких и мозга.

При водном отравлении наблюдается тошнота, многократная рвота, судороги возможно развитие комы. Данная патология в клинической практике может иметь место при часто повторяющихся очистительных клизмах, после проведения хирургических операций, когда функция почек понижена и наступает олигоурия.

Гиперосмолярная гипергидратация может возникнуть при одновременном поступлении в организм большого количества воды и электролитов, что наблюдается, например, при вынужденном использовании морской воды в качестве питьевой.

Быстрое возрастание уровня электролитов во внеклеточном пространстве приводит к острой гиперосмии, вода выходит из клеток, наступает их обезвоживание, что проявляется чувством жажды, несмотря на то, что воды в организме достаточно.

Этот тип нарушения сопровождается развитием таких же симптомов, как и при гиперосмолярной дегидратации.

Распределение воды во внутриклеточном и внеклеточном секторах при гипергидратации представлено в таблице 4.

Таблица 3.

Распределение воды во внутриклеточном и внеклеточном секторах при гипогидратации.

Показатель Изоосмолярная Гипоосмолярная Гиперосмолярная
Причины развития • Начальная стадия острой массивной кровопотери (до развития эффектов краткосрочных механизмов компенсации). • Обильная рвота. • Профузный понос. • Ожоги большой площади. • Полиурия, вызванная повышенными дозами мочегонных препаратов. • Гипоальдостеронизм. • Продолжительное профузное потоотделение с выделением большого количества солей. • Повторная, неукротимая рвота. • Мочеизнурение сахарное или несахарное. • Профузные поносы. • Неправильное или необоснованное проведение очистительных процедур. • Недостаточное потребление воды. • Обильное и длительное потоотделение. • Полиурия (при сахарном и несахарном диабете). • Длительная ИВЛ недостаточно увлажнённой газовой смесью. • Питьё морской воды в условиях гипогидратации организма. • Парентеральное введение растворов с повышенной осмолярностью.
Объем внеклеточной жидкости ¯¯ ¯¯ ¯
Объем внутриклеточной жидкости = (при ожогах ¯) ­ ¯
Проявления • Уменьшение ОЦК. • Повышение вязкости крови (НСТ­). • Нарушение микрогемоциркуляции. • Расстройства КОС. • Гипоксия.   • Уменьшение ОЦК. • Увеличение вязкости крови (НСТ­). • Снижением УО и МОК. • Гипоперфузия органов и тканей. • Расстройства КОС. • Гипоксия. • Сухость слизистых оболочек и кожи, гипосаливация. •¯ диуреза. • Жажда. • Снижение ОЦК. • Увеличение вязкости крови (НСТ­). • Системные расстройства кровообращения. • Нарушения КОС. • Гипоксия. • Лихорадка. • Нервно-психические расстройства. • Мучительная, непреодолимая жажда.

Таблица 4.

Распределение воды во внутриклеточном и внеклеточном секторах при гипергидратации.

Показатель Изоосмолярная Гипоосмолярная Гиперосмолярная
Причины развития • Введение больших количеств изотонических растворов. • Повышение проницаемости стенок микрососудов. • Гипопротеинемия. • Хронический лимфостаз. • Избыточное введение в организм воды (водное отравление). • Повышенное содержание в крови АДГ в связи с его гиперпродукцией в гипоталамусе (синдром Пархона). • Почечная недостаточность.   • Вынужденное питьё морской воды. • Введение в организм растворов с повышенным содержанием солей. • Гиперальдостеронизм. • Почечная недостаточность.
Объем внеклеточной жидкости ­­ ­ ­­­
Объем внутриклеточной жидкости = (­) ­ ¯¯¯
Проявления • Увеличение ОЦК. • Повышение АД, сердечного выброса и ОПСС. • Развитие сердечной недостаточности. • Формирование отёков. • Увеличение ОЦК и гемодилюция. • Полиурия. • Гемолиз эритроцитов. • Рвота и диарея. • Психоневрологические расстройства: вялость, апатия, нарушения сознания, судороги. • Недостаточность кровообращения с развитием отёков. • Гиперволемия,­ОЦК. • Повышение АД и сердечного выброса. • Увеличение центрального венозного давления крови. • Отёк мозга и лёгких. • Гипоксия. • Нервно-психические расстройства. • Сильная жажда. • Гиперосмолярный синдром с гипогидратацией клеток.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/13_36367_tipovie-formi-narusheniya-vodnogo-obmena.html

Нарушение водно солевого обмена – методы лечение

Нарушение водного обмена в организме

29.01.2018

В поддержании и регуляции водно-солевого баланса ведущую роль играют почки, гормоны надпочечников и центральная нервная система.

Почки регулируют выведение или задержку воды и электролитов. Этот процесс зависит от концентрации солей в организме, который поддерживается на необходимом уровне. В основном эта регуляция связана с ионами натрия.

Почки относятся к мочевыделительной системе, представленной также мочеточниками, мочевым пузырем и мочеиспускательным каналом.

Отфильтрованная почками моча по мочеточникам спускается в мочевой пузырь, где может находиться некоторое время, и затем, по мере достижения определенного объема, выводится наружу по мочеиспускательным каналам. Это основной путь выхода «отработанной жидкости» из организма.

В норме в моче не содержатся необходимые организму элементы: белки, аминокислоты, глюкоза.

Располагаются почки в забрюшинном пространстве по обе стороны позвоночника, примерно около 12-го грудного и 2-го поясничного позвонков. Как правило, правая почка находится несколько ниже левой, так как это зависит от расположенной рядом печени.

Капсулу почек защищает и надежно фиксирует окружающая их жировая ткань. Наличие жировой ткани жизненно важно! При ее отсутствии (при выраженном дефиците веса, индексе массы тела меньше 19 — см. статью «Эпидемия ожирения»), фиксация нарушается и становятся возможны подвижность и опущения почек.

Почки имеют бобовидную форму, плотную структуру 10–12 см в длину и 5–6 см в ширину, весом 120–200 г каждая. При таких малых размерах почки выполняют большое количество жизненно важных функций:

  • выведение излишков жидкости;
  • выведение с мочой конечных продуктов, в частности, токсичных для организма продуктов азотистого обмена;
  • регуляция общего объема крови и, как следствие, артериального давления
  • регуляция ионного состава и осмотической концентрации плазмы крови;
  • кислотно-щелочного состояния крови, при нарушении которых, формируются множественные изменения функций в других органах;
  • регуляция образования клеток крови (эритропоэза) и свертываемости крови;
  • регуляция обмена кальция, белков, липидов и углеводов;
  • выработка биологически активных веществ.

Какие же структуры обеспечивают все эти функции?

Главной структурной и функциональной единицей почки является нефрон. В каждой почке их до 1,3 млн. И если по какой-либо причине нефроны перестают работать — нарушаются все функции почек.

Нефрон — это сеть сосудистых капилляров, по которым протекает кровь.

В каждый нефрон входит артериальный сосуд, распадается на множество мелких сосудов, образуя клубочек (гломерулу), которые вновь соединяются в один выходящий сосуд.

В этой системе из крови образуется сначала первичная моча, которая, проходя дальше по сложному канальциевому аппарату нефрона, преобразуется по своему составу в окончательный вариант «отработанной жидкости». Почки способны выполнять свою работу даже при сохранении всего 30 % своей функциональной способности (люди могут нормально жить с одной почкой).

Нет другого такого органа, который бы так сильно зависел от кровоснабжения. При его нарушении почка перестает полноценно выполнять свои функции. При одинаковой массе почек и сердца, 25 % минутного объема крови приходится на кровоснабжение почки, тогда как на другие органы — до 7–8%.

Образование мочи

Моча образуется из крови. Что заставляет жидкую часть крови проходить через стенки сосудов в капсулу почек? Фильтрация жидкости обеспечивается разницей давления крови во входящем и выходящем из нефрона сосуде (за счет разного диаметра сосудов).

Капилляры — это самые мелкие и тонкие сосуды. Обычно давление в них незначительное — около 15 мм.рт.ст, но в капиллярах почек оно достигает значений в 70 мм.рт.ст., более характерных для средней артерии.

В результате такой разницы в давлении и происходит фильтрация, которая идет самопроизвольно, без контроля со стороны гормонов и центральной нервной системы.

Обильное кровоснабжение и адекватное артериальное давление — важные факторы, изменения которых при заболеваниях (например, болезни почек, гипертоническая болезнь), может привести к нарушению образования мочи и водно-электролитного баланса в целом.

Что же фильтруется из крови в мочу?

Сначала в почках образуется первичная моча (около 200 литров в сутки при скорости фильтрации 125 мл/мин), по сути, представляющая собой плазму крови. Плазма отличается от цельной крови отсутствием форменных элементов (эритроцитов, лейкоцитов, тромбоцитов).

В норме в первичной моче еще присутствуют необходимые организму низкомолекулярные компоненты и глюкоза. Но уже на этом этапе в мочу не должны попадать клетки крови и белки.

Что же происходит дальше?

На втором этапе образования мочи необходимые организму аминокислоты, глюкоза и другие вещества, оставшиеся в первичной моче, возвращаются обратно в кровь. Также происходит реабсорбция (обратное всасывание) соли (и здесь уже имеется в виду только натрий) и воды. И из 200 литров остается 60 литров — треть профильтрованного объема.

Дальше в результате каскада процессов реабсорбции натрия и воды, в почках постепенно уменьшается объем жидкости и, соответственно, увеличивается концентрация мочи.

Нормальная работа почек позволяет сохранять воду в организме.

Как это происходит? Почему вода возвращается в кровеносное русло, а не выводится наружу, и диурез у человека составляет не 20–30 литров за сутки, а всего 1,5–2 литра?

После того, как моча проделала длинный путь, она поступает в конечный отдел нефрона, в котором реабсорбция натрия из почечного канальца в кровь осуществляется уже под контролем гормона коры надпочечников альдостерона.

Мы уже знаем, что натрий — это осмотически активное вещество. Соль переходит обратно в кровоток, и вода, как растворитель, следует за натрием. В результате на выходе моча имеет наибольшую концентрацию.

Как работа почек зависит от артериального давления?

Почки — это первый орган, который реагирует на изменения артериального давления крови.

При падении артериального давления снижается кровоток в почках, что ведет к их гипоксии (кислородному голоданию).

В ответ на это почки выделяют в кровь ренин (в переводе с латинского «ren» означает «почка»), который запускает сложную цепочку реакций в организме, ведущих к сужению сосудов и повышению общего артериального давления. В результате приток крови к почкам увеличивается, и их функции восстанавливаются.

Так в норме (когда человек здоров, внимателен к себе, и все его физиологические механизмы регуляции сохранены) срабатывает компенсаторный ренин-ангиотензин-альдостероновый механизм регуляции артериального давления и объема крови в организме.

Почему эти механизмы выходят из строя?

Снижения артериального давления крови мы поначалу не ощущаем. Чувствуя некоторую слабость или просто ради удовольствия, мы «бодримся» чашкой кофе или чая с утра и в течение дня. Действие кофеина на сосуды, отсутствие нормального питьевого режима, прием медикаментов приводят к сбою отлаженной системы, которая уже становится причиной формирования артериальной гипертензии.

За счет чего? И почему говорят, что в повышении давления «виновата» печень?

Дело в том, что печень продуцирует белок ангиотензиноген — неактивную форму ангиотензина. Он постоянно циркулирует в крови и никакого вреда нам не приносит.

Но когда в кровь выделяется ренин, то запускается цепочка превращения ангиотензиногена (под действием вещества, вырабатывающегося клетками легких — ангиотензин-превращающего фермента — АПФ) в активное вещество ангиотензин, который уже обладает мощным сосудосуживающим действием.

Это один из механизмов повышения артериального давления. Препараты, снижающие артериальное давление, часто содержат вещество, блокирующее АПФ, что препятствует выработке активного ангиотензина.

Помимо сосудосуживающего и гипертензивного действия, ангиотензин еще активирует процесс выброса в кровь гормона надпочечников альдостерона, который увеличивает реабсорбцию натрия. Вслед за этим увеличивается возврат воды в кровь, что приводит к увеличению ее объема. А любое увеличение объема циркулирующей крови способствует опять же повышению артериального давления.

Получается замкнутый круг!

Для чего я насколько подробно это описывала? Чтобы понимать, как все сложно и взаимосвязано, как одно тянет за «хвост» другое… Любые нарушения всегда имеют причины, и их следствия становятся причинами следующих изменений, приводящих к болезням, которые на первый взгляд могут отстоять от первопричин очень далеко.

Теперь мы знаем, как связаны работа почек, объем циркулирующей жидкости и артериальное давление.

Есть еще один гормон, вырабатывающийся в центральной нервной системе (в гипоталамусе), участвующий в регуляции нормального уровня жидкости в организме — вазопрессин. Другое его название — антидиуретический гормон, т.е., снижающий выделение жидкости. Он задерживает натрий, а значит и воду.

Это важно для предотвращения обезвоживания (в результате полиурии) и сохранения необходимого организму объема жидкости.

Недостаточное выделение антидиуретического гормона приводит к такому заболеванию, как несахарный диабет, одним из клинических признаков которого является полиурия — повышенное мочевыделение. Диурез может увеличиваться до 20 литров в сутки, соответственно, такие пациенты постоянно пьют жидкость, чтобы восполнить ее потерю.

Итак, в норме человек имеет следующие показатели: объем мочи 1,5– 2 литра с высокой осмотической концентрацией, отсутствуют глюкоза, белки, форменные элементы крови, микроорганизмы. Если что-то из перечисленного в моче определяется, то теперь не сложно понять, на каком этапе мочеобразования произошло нарушение.

Что делают мочегонные препараты (диуретики)?

Они усиливают процесс мочевыделения за счет угнетения реабсорбции (обратного всасывания) натрия. Натрий тянет за собой воду, что ведет к увеличению выделяемого объема мочи. Обычно диуретики назначают при гипертонической болезни, отеках, заболеваниях почек. И, как правило, рекомендуют ограничить количество жидкости и соли (вплоть до бессолевой диеты). Правильно ли это?

В масштабах организма — это нарушение водно-солевого обмена.

Лекарственными средствами «точечного действия» можно пользоваться, чтобы снизить в давление или отек здесь и сейчас. Это скоровспомощные действия. Как же можно принимать их годами, а иногда десятилетиями, постоянно увеличивая количество других медикаментов, призванных нейтрализовать побочные эффекты диуретиков?

Детские особенности

В раннем детстве почки нечувствительны к антидиуретическому гормону.

Грудных детей необходимо поить водичкой. Не соками, не «успокаивающим» сладким чаем, а просто водой, так как именно нехватка воды в тканях может вызывать беспокойство.

Если дети не получают достаточное количество воды (не молока, так как молоко — это питание), то это может привести к обезвоживанию тканей, интоксикации, повышению температуры, нарушению стула и сна.

Помните, у новорожденных и грудных детей не развито чувство жажды!

Если нарушать режим кормления и давать детям (по своим привычкам) сильно соленую пищу, это может вызвать отеки в тканях, так как повышенная осмолярность способствует задержке жидкости в организме. Поэтому необходимо с большой внимательностью и осторожностью относиться и к режиму кормления детей, и к водному режиму.

Для чего я рассказываю об этом слишком подробно? Точно не для того, чтобы вы разбирались в сложных механизмах, про которые и многие врачи не помнят.

Но для того, чтобы вы понимали, как много органов и систем участвуют в, казалось бы, «простом» понижении или повышении артериального давления, уменьшении выделении мочи, образовании отеков и т.д.

Чтобы вы не успокаивались на подобранных вам «до конца жизни» медикаментах, «стабилизирующих» давление, выход мочи и т.д., а задались целью наладить работу своих органов через контроль образа жизни.

(Бесконтрольность которого уже привела или непременно приведет к болезни). Чтобы максимально отказаться от приема медикаментозных препаратов, которые всегда токсичны и чужеродны человеческому организму, и приводят к вторичным изменениям в других органах.

Я призываю не успокаиваться на «чуть повышенных» показателях в анализах, «небольших дозах» принимаемых медикаментов, и не уповать на «авось само как-нибудь рассосется».

Будьте осознанны к своему состоянию. Наметьте путь, по которому пойдете, чтобы стать здоровыми.

Наладить питание и прием воды

Человек даже думать не может, если он хочет сильно есть или пить. Наша способность мыслить также зависит от физико-химических показателей нашего тела.

ПРОСТО ПИТЬ ВОДУ! Это предупредит обезвоживание тканей, сгущение крови и повышение артериального давления.

Чай, кофе, морс, компот, молоко, суп — это не вода. Это или напитки, имеющие свое действие на организм, или еда, расходующая воду в процессе своего усвоения.

Обратить внимание на потребление натуральной соли. Она нужна, но ее количество имеет значение. Бессолевые диеты также приводят к нарушениям. Нужен баланс, «золотая середина».

Двигаться! Могут помочь энергетические практики: цигун, тайдзи, дыхательные и йога-практики. И хорошо, если мы не препятствуем целительным действиям этих практик неправильным режимом питания.

Соблюдать режим сна и бодрствования! Дать организму возможность восстановиться и очиститься во время сна с 22.00 до 04.00.

Не есть после 19.00.

Быть спокойными, уравновешенными, добрыми ко всем. Для успокоения ума выполнять регулярно медитации. Чтение молитв — это тоже медитация.

Если уже есть проблемы со здоровьем, или вы не знаете с чего начать обследование, — обратитесь за помощью к специалистам альтернативной медицины, занимающимся восстановлением функций всего организма. Это даст возможность снизить или совсем отказаться от приема химических медикаментозных препаратов и идти к здоровой полноценной жизни без них.

Источник: https://zagerclinic.ru/articles/vodno-solevoy-obmen-chast-vtoraya/

Обмен воды и минералов в организме человека

Нарушение водного обмена в организме

Сергей Александрович Мошковский о том, как работает биохимия, что она делает для человека и человечества, какими исследованиями учёные занимаются сегодня и какие прорывы ожидают в ближайшем будущем.

Стенограмма под видео

— Всем привет! Вы на канале SciTeam. Я рада представить вам нашего гостя, Мошковского Сергея Александровича, доктора биологических наук, профессора РАН, заведующего кафедрой биохимии медико-биологического факультета Российского национального исследовательского медицинского университета имени Пирогова и руководителя лаборатории медицинской протеомики. Сергей Александрович, здравствуйте!

— Здравствуйте!

— Давайте мы, собственно, начнём с того, что же такое наука биохимия, когда она сформировалась, когда впервые появились её элементы?

—Смотрите, наука биохимия — это уже как-то звучит достаточно современно. Когда мы учимся в школе, в том числе и в высшей, у нас есть там история, химия, биология, а когда совсем в высшей школе – биохимия, молекулярная биология, биоорганическая химия. Но на самом деле сейчас знаний накопилось столько, что все эти дисциплины соприкоснулись.

Просто у нас, например, в институте, в университете есть кафедра биохимии, есть кафедра молекулярной биологии, есть кафедра молекулярной генетики, а на самом деле они могут говорить об одном и том же. Поэтому сегодня биохимия – это какой-то частный раздел, да и то который туманно определяется.

Сейчас есть просто молекулярные науки о жизни, а разные кафедры уже делят между собой эти знания, по сути, как договорятся. Например, у нас изучают белки-метаболиты, на молекулярной биологии — нуклеиновые кислоты, то есть жизнь очень сильно изменилась, потому что все технологии интегрировались.

Биохимия — это собственно та химическая основа, из которой состоит живое. Если взять химию, то мы можем покопать землю, порыть, посмотреть, что там, обработать, растворить, увидеть, какие произойдут реакции. Далее – займёмся аналитической работой, то есть будем выявлять то, что там находится.

Мы можем взять какого-нибудь зверя, кусок мяса или что-нибудь живое, травки, измолоть его и посмотреть, что там. Это есть исходно задача биологической химии, это просто было как раздел органической химии, более усложнённый, может быть.

Эта работа велась, когда был расцвет органики, ну а в расцвет органики (конец XIX -начало XX века) возникла и биохимия, потому что был большой соблазн взять живого голубя, кинуть его в мясорубку и посмотреть, что будет. Тогда, в общем, всё было сурово в жизни.

— Бедный голубь!

— Ну ладно, хорошо, кусок мяса. Тогда люди об этом не думали, они работали. В то время биохимия – это было одно, а, например, физиология была совершенно в другом мире.

Сейчас всё это соприкоснулось, потому что физиология, например, стала молекулярной, а раньше: ударили током – у него ручка задёргалась, никто не знал, что это, и писали: «Задёргалась один раз», «Задёргалась два раза».

А теперь мы говорим: под воздействием электрического тока открылись каналы, там, в клетках, потекли токи ионов, — ионы, уже пошла химия. Понимаете, уже наступил момент, когда мы не воспринимаем всё отдельно.

Как знаете, физики, они биологов слегка презирают обычно, потому что жучки, букашки, мы тут атомы расщепляем, а вы тут со своими букашками залезли к нам. И они говорят, что биология превратится в науку, когда она станет химией, а химия превратится в науку, когда она станет физикой.

Есть такое высказывание, оно никому не принадлежит, но я его слышал не раз. Идёт процесс интеграции знаний. В идеале мы должны построить модель живого организма на атомарном уровне. Это будет такая высокая цель биологии, то есть мы будем знать всё от «а» до «я», от того, как он бегает, прыгает, что он ест, как он себя ведёт. Поэтому, «наука биохимия» — это несовременно звучит, у нас интегративный подход, у нас всё соединено.

— То есть, получается, что вы себя позиционируете как учёный?

— Я просто биолог.

— Биолог?

— Да. Я биолог, но больше молекулярной биологии. Но я стараюсь не отставать, я очень интересуюсь вообще живой природой, но это уже моё пристрастие. То есть сегодня молекулярный биолог может вообще на травку даже не наступать никогда.

— Сергей Александрович, расскажите про Ваши исследования.

— Мы занимаемся некой тонкой настройкой белков мушки дрозофилы, мыши и человека. Есть у нас такая белковая тема, как… С помощью РНК происходит тонкая настройка белков.

Для этого есть аналитические технологии, и мы пытаемся из существующих данных и из своих данных извлечь больше информации. Это такие маленькие шаги.

Те деньги, которые мне удаётся добыть, и кормить при этом четыре-пять человек моей группы, – этого хватает вот на такие исследования. У них есть свой масштаб, и, конечно, потолок учёного – это то финансирование, которое он получает.

— Расскажите тогда, пожалуйста, про то, как происходят ваши исследования, про инструменты и принципы работы учёного.

— Это зависит от того, какого рода гипотеза. Есть исследования in vivo, то есть с живыми организмами. С ними что-то происходит, мы можем взять, скажем, какую-то функцию, которая хорошо охарактеризована, и у какого-то подопытного животного её выбить, получить так называемый нокаут, нокаут генный, то есть убрать ген, вырубить его, условно говоря.

Нокаут — это значит, что мы вырубаем работу определённого гена, то есть участка генома, и он полностью остаётся неработающим, и мы смотрим, что будет с таким животным, которое мы получили искусственно. Мы его сравниваем с животным, у которого всё нормально, всё обычно, оно дикое. Есть дикий тип, и есть мутантный тип.

То есть получать мутантов, для того чтобы охарактеризовать какую-то функцию. Можно искусственно вторгнуться в работу in vivo: использовать на них всякие вещества, лекарства, блокаторы каких-то функций — это работа in vivo. In vitro – следующая стадия, это живые клетки, которые культивируются.

Они живые, но это уже не организм, то есть можно в баночках выращивать клетки: бактериальные, человеческие, животных, насекомых — кого угодно, пожалуйста. Есть большое количество уже устоявшихся культур клеток, с которыми работают, над ними ставят, как-то их редактируют, смотрят, что с ними получилось, наливают в них лекарства.

Следующая стадия уже считается in vitro, в пробирке, но это как бы in vitro с живым объектом, а есть ещё совсем in vitro in vitro, когда там просто уже они условно мёртвые, но функционирующие куски, скажем, части клетки: какие-то белки отдельные, какие-то отдельные молекулы.

Они функционируют, но они уже в искусственной системе разбавлены каким-то специальным раствором, и мы за этим наблюдаем с помощью аналитической технологии, технологии, уже близкой к химической. Мы смотрим, сколько этого вещества, уменьшилось ли оно, увеличилось ли, какое это вещество.

И тут уже используются методы, например, секвенирования нуклеиновых кислот, но это приборы сложные, частично оптические, на физических принципах они построены. Для белков это, например, масс-спектрометрия, всякие методы спектральные, физические методы уже. Физико-химические методы, которые разработаны давно для разных других молекул, и их интегрировали в биологию. Поэтому аналитические методы едины, что допинг мерить, что мерить какие-то вредности, что мерить биомолекулы другого типа.

— Вы упомянули про практическое применение научных исследований для человека. Что ещё бы Вы обозначили?

— Основное — медицина, это номер один, понятно, что медицина — номер один для биохимии, вообще для биотехнологии так называемой, медицинская биотехнология, медицинская биохимия — это диагностика, лечение, прогноз.

Всё это развивается успешно с помощью геномной технологии, в первую очередь, и сопровождающей её другой технологии, постгеномной. То есть тех технологий, которые выросли уже на основе расшифрованных геномов.

Это первое, что есть, а дальше биотехнологии, то есть создание сельскохозяйственных организмов, хотя люди суеверно относятся к рекомбинантным организмам, к ГМО, но в этом нет ничего совершенно опасного.

— Я думаю, Вашими стараниями, я имею в виду популяризаторов, отношение меняется.

— В этом есть опасность, но опасность есть во всём. В неправильной диагностике, в неправильном лечении, в неправильном применении, например, рекомбинантных организмов. Нет такой вещи, которая не вызывала бы опасность, такой вещи просто не существует, понимаете? Пальцы в розетку можно засунуть и умереть в любой момент, да? Точно так же, как это касается всего.

Такого рода неоднозначность всего вызывает общественное внимание, понятно, что, как с вакцинацией, знаете, кто-то умер от неё, все остальные живут, и с ними ничего как будто не произошло, но на самом деле степень их защиты огромная, социальный эффект огромный, но кто-то один умер, вот не повезло, у него аллергия, он был ослаблен, не досмотрели специалисты, которые его вакцинировали. Также и с ГМО.

—Тем не менее, всё-таки каких-то открытий Вы ждёте в ближайшее время в целом от Вашего узкого сообщества и от мирового сообщества научного в вашей области?

— Сегодня разработан способ редактирования геномов. Точного редактирования генома. Например, имеется животное, у которого есть такой-то код, который нас не устраивает. Мы просто внедрились, и изменили этот код очень точно, с точностью до одной буковки. Как будто точная-точная коррекция, и смысл сразу поменялся.

Сегодня ждут редактирования человеческие организмы, больные, например. Например, на стадии эмбриона мы способны будем вторгнуться туда и, например, ребёнка-инвалида превратить в здорового, абсолютно нормального ребёнка, на стадии эмбриона. А далее уже на стадии всего организма это намного сложнее.

Вот сейчас есть редактирование генома человека с медицинскими целями, то есть полное исцеление, например, наследственных заболеваний, которые выявились. Впоследствии возможно, при грамотной доставке, полное исцеление злокачественных опухолей. Это будущее.

Вообще излечение злокачественных опухолей — это вопрос, в котором прогресс достигается невероятный, и проблема может быть решена. Не полностью, но значительно улучшится ситуация.

— Сергей Александрович, расскажите, пожалуйста, что именно повлияло на Вас, почему Вы стали учёным?

— Я с детства любил животных, я в четыре года решил стать биологом просто. Но потом так сложилось, могу сказать, малодушие тоже меня привело в биохимию, потому что я хотел поступить на биофак, но у меня там не хватало химии как предмета. Надо было сдавать химию, а я не подготовился.

Я поэтому просто пошёл туда, где химию не надо было сдавать. А так как у меня в роду много медиков, причём известных, я решил совместить, так сказать, какую-то профессию медицинскую и биологическую, и вот это меня привело в институт.

Ну как, вы понимаете, существуют какие области там? Я воплощаю, так сказать, преподавание и исследования, а что ещё у нас существует в природе, какие другие занятия? Может быть, спорт, искусство и продажи, наверное, да, бизнес. К бизнесу у меня душа не лежала, я по натуре не коммерсант.

Исследования, они как бы, понимаете, если что-то сделал и отправил… Они как бутылка, брошенная в воду,

которая путешествует по волнам, и кто её вытащит потом? То есть ты знаешь, что оставил свой след, эта бутылка плавает, кто-то её вытащит, а может быть, никогда не вытащит. В этом есть некая такая миссия. Ты создаёшь знания и отправляешь их в вечность.

— Сергей Александрович, почему биохимию важно популяризировать?

— Наверное, науку популяризовать надо, чтобы люди не тратили собственные накопления на какие-нибудь диеты антинаучные. Просто наука нужна, потому что она, по идее, содержит в себе истину, а другие сферы – они истины как таковой не содержат.

Например, бизнес как таковой не обязательно содержит истину, вы можете продавать то, что не работает, но и не вредит, потому что если вредит, то это уголовщина. А если оно не вредит, вы можете это продавать, и это будет маркетинговая хорошая технология, правильно? Но истины она не содержит. Продажа не содержит истины, а наука содержит.

Если мы считаем, что от того, что вокруг истина, людям станет лучше, то мы должны популяризировать это. Есть классические книги популярные, которые можно читать всем.

— Посоветуйте что-нибудь.

—Вот книга Франк-Каменецкого про геномы – из классических. Есть такой деятель очень хороший, физтех Максим Франк-Каменецкий. Не помню, как его книга называется, но она очень известная.

Есть такой профессор в Новосибирске, Павел Михайлович Бородин, он написал очень хорошую книгу: «Кошки и гены» называется, там о генетике в целом, то есть книга тоже блестящая совершенно. Я кого-то, конечно, не назову, есть ещё несколько книг ещё советских.

Потрясающая совершенно книга — «Происхождение Земли и жизни на ней», Кирилл Еськов автор, тоже известный палеонтолог, просто потрясающая книга, я просто фанатично к ней отношусь. То есть если что-то и стоило оставлять, то вот. Эта книга блестяще написана, просто образец работы.

За стенограмму спасибо команде SciTeam

Источник: https://pikabu.ru/story/obmen_vodyi_i_mineralov_v_organizme_cheloveka_6803130

ВидБолезни
Добавить комментарий